Imágenes de páginas

Development and implementation of a new clean energy source suitable for perhaps centuries of utilization will not come lightly in terms of either human effort or dollars. To put this in perspective consider these recent energy costs: In 1976 the United States spent nearly $23 billion for new electric power plants, overland transmission, etc., the total price for the electricity consumed within the United States was approximately $55 billion and, as previously stated, $45 billion was sent overseas in 1977. A national energy solution can therefore be expected to be relatively expensive.

In the lower portion of Figure 12 are repeated the cost trends from Figure 8, showing the crossover point where, after approximately the mid 1990's, electric energy from solar power satellites becomes lower in cost (with a decreasing trend). Above this SPS line are dollars which might be spent if solar power satellites are not developed. The total in this shaded area is well over one trillion dolars for the time period 1995 to 2025. The total cost to not develop satellite solar power is greater than the cost to develop it.

[ocr errors][merged small][ocr errors][merged small][ocr errors][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small]

Figure 12. What Can a "National Energy Solution" be Expected to Cost?

Table 5 repeats the energy options of Table 2 but adds recent funding levels. It appears that research funds are not being expended for solar power satellites in proportion to the potential benefit. For example, solar power satellites appear to be a clean, abundant, energy source which can be developed with technological certainty. Yet the SPS funding level is less than 1% of that for fusion which apparently requires considerable development in the area of fundamental physics.

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

The solar power satellite concept is now approximately 10 years old. System level studies have now defined the concept; the next step should be a technical verification phase as shown in Figure 13. In this phase verification tests of the basic elements of SPS technology would be performed on the ground and in space. The space shuttle, which will become operational soon, would be the fundamental vehicle for accomplishment of the in-space verification test, and would be the basis for construction in space of a prototypical large scale electrical generation module in the early 1980's. The total verification effort defined here is approximately $3 billion, a modest amount in comparison with the potential benefits of solar power satellites and in comparison with past expenditures for other alternative energy sources.

[blocks in formation]

The Orbital Service Module, an adjunct to the space shuttle orbiter and the Nation's future space transportation system will soon begin conceptual development in a systems study.

This "orbital resident" will provide electrical power and other services for long term utilization by payloads brought to and from space by the space shuttle orbiter and thereby free the space shuttle for a basic transportation role. With one or more Orbital Service Modules available in space, large scale test of solar power satellites systems might proceed at even lower cost than was shown in Figure 13.

Near the end of the technical verification phase a development and facilitization effort would get underway leading to in-space operation of the first full-size solar power satellite in the early 1990's. The orbital construction base concept developed in the SPS systems studies has the capability to produce, in space, one solar power satellite per year, thus, in the production phase a single construction base would be producing units at that rate. Perhaps one to two years after the first base was made operable, a second construction base could be brought on line in orbit, allowing even more rapid solar power satellite construction.

Thus, the contribution of solar power satellite to our total energy requirements by the end of this century could be quite significant.

We all remember the old joke in which the farmer giving directions says, "You can't get there from here." Expeditious development of a new energy source may be required in order that we do not find ourselves in a position where we cannot get there from now (whenever now may be). Historically several decades usually pass between development of a new technological concept and its full implementation. For example, the turbojet engine began development in the late 1930's, but was not in fleetwide aircraft utilization until the 1960's. It may be mandatory to embark upon vigorous development of a new energy source to let that source achieve significant use before degradation of our national economy and fuel depletion preclude development of this source. We should not start too late.

The planet's store of fossil energy will be depleted. The U.S. Department of Interior has estimated that about 1% of the measured world recoverable energy reserve was consumed in 1974. The global consumption rate is increasing more than 5% per year.

So it's only a matter of time. How will the human race respond to this challenge? Other countries envy the wealth and technical expertise of the United States and expect (perhaps this expectation is unexpressed) us to provide leadership. Surely the nation which put man on the moon can do something.

What will be our response? Will we advocate conservation and enforce careful rationing of the dwindling resources, so that each person has less and less until "the lights go out" and our economy crumbles? Or will we accept some energy solution which endows our successors with a legacy of ever increasing pollutants which eventually overwhelms the environment?

There is abundant energy in the universe. Fantastic quantities of energy stream past our planet from that giant, existing fusion reactor, our Sun. We can tap this energy in a clean and safe way and bestow on our posterity the basis for a stable life without excessive austerity. Solar Power Satellites can give us access to this energy, but we must begin while we yet have the time and resources for the accomplishment.

[blocks in formation]

QUAKER RIDGE ROAD, CROTON-ON-HUDSON, N.Y. 10520● TELEX 137343 914 762-0700 23 January 1978

Hon. Olin E. Teague

Committee on Science and Technology

U. S. House of Representatives

Washington, D. C. 20515

Dear Mr. Teague:

Thank you for your invitation to submit a paper to the Committee regarding our views on the future of the space program. The accompanying text is a very brief adaptation of a recent Hudson Institute study funded by NASA. The study attempts to provide a long-term perspective on the future of space developments and is available to anyone interested.

I hope our submission will assist your committee in its deliberations.

Sincerely yours,

il Mil Brown

William M. Brown, Ph.D.

Director, Technological Studies


24-215 O 78 - 22

« AnteriorContinuar »