If we are to learn about distant life, it must make itself perceptible. As far as we can see, only life that has followed our own evolution to the extent of being able to send some mark of its presence across space can be found. This must mean that intelligence develops naturally out of evolving life, that it can make signals capable of traversing space, and that, for some period of time at least, it wants to make its presence known (or at least does not conceal it!). If these conditions exist anywhere, we might hope to detect creatures far older and more capable than ourselves. Exploration would then cross a new frontier; the frontier of an intelligence biologically wholly unrelated to our own. How would such signals be made? Might super-Viking probes cross space? Might light flashes like stellar lighthouses show an intelligent presence? Much speculation has considered the situation (some of the variety of different ideas are presented in Complementary Document 1). The key facts seem to be that radio waves cross space well, and that the radio engineer has found means to detect extremely weak signals with large dishes and extremely sensitive receivers. Violent events on every scale, from explosions in galaxies to electrical instabilities on the planet Jupiter, have been recorded by radio astronomers. None of these signals appear to bear the marks of any but an astronomical origin, so far. Interesting as these have been, it remains true that radio energy compared to visible light is scarce in the Galaxy. Within the scope of present knowledge in our own Galaxy, a certain well-defined radio waveband (from about one meter to one centimeter) is, for natural reasons, the quietest region over the whole span of electromagnetic waves (see Section II-4). This fact lies behind a remarkable event in human history. Almost imperceptibly, without really intending it, within the past two or three decades we have entered a new communicative epoch. Until that time, we could have made no sound, no pattern or mark, no explosive flash of light on our small planet that could be detected far out among the stars by any means we understand. Space is too deep, and the stars are rivals too brilliant, for any mere faint human glow to become visible far away. Even the whole amount of sunlight reflected from a planet, a light source thousands of times more powerful than all the energy now at human disposal - is still beyond our ability to pick out at the distance of a nearby star. But our radio technique, only a generation or so old, has now reached such maturity that a signal sent from an existing radio dish on Earth, with sending and receiving devices already at hand, could be detected with ease across the Galaxy by a similar dish, if only it is pointed in the right direction at the right time, tuned to the right frequency. Such a lucky observer or one who is patiently and systematically searching - would see us as unique, distinguished among all the stars, a strange source of coherent radio emission unprecedented in the Galaxy. Or are we without precedent? Are we the first and only? Or are there in fact somewhere among the hundred billion stars of the Galaxy other such beams, perhaps so many of them that our civilization, like our Sun, is to be counted as but one member of a numerous natural class? For such a radio beam cannot come, we think, from any glowing sphere of gas or drifting beam of particles. It can come only from something like our own complex artificial apparatus, far different from any star or planet, smaller, newer, much more particular; something we would recognize as the product of other understanding and ingenious beings. That is the topic of this technical report: the search for extraterrestrial intelligence, SETI. We do not intend to send any signals out to add to those which have already gone out from our TV transmitters and our powerful radars. Rather, we want to listen, to search all the directions of space, the many channels of the radio (and other) domains, to seek possible signals. Perhaps it will be only an accidental signal, as we have made ourselves. That would be harder to find. Or perhaps there is a deliberate signal, a beacon for identification, or even a network of communication. There seems no way to know without trying the search. This is an exploration of a new kind, an exploration we think both as uncertain and as full of meaning as any that human beings have ever undertaken. The search would be an expression of man's natural exploratory drive. The time is at hand when we can begin it in earnest. How far and hard we will need to look before we find a signal, or before we become at last convinced that our nature is rare in the Universe, we cannot now know. THE IMPACT OF SETI Whether the search for extraterrestrial intelligence succeeds or fails, its consequences will be extraordinary. If we make a long dedicated search that fails, we will not have wasted our time. We will have developed important technology, with applications to many other aspects of our own civilization. We will surely have added greatly to our knowledge of the physical Universe. The global organization of a search for interstellar radio messages, quite apart from its outcome, can have a cohesive and constructive influence upon our view of the human condition. But above all, we will have strengthened belief in the near uniqueness of our species, our civilization and our planet. Lacking any detection, the conviction of our uniqueness would hardly ever reach certainty; it would form over a long time, less into sharp conclusions than into a kind of substructure of human thought, a ruling consensus of attitudes. If intelligent, technological life is rare or absent elsewhere, we will have learned how precious is our human culture, how unique our biological patrimony, painstakingly evolved over three or four thousand million years of tortuous evolutionary history. Even a growing possibility of such a finding will stress, as perhaps nothing else can, our lonely responsibilities to the human dangers of our time. On the other hand, were we to locate but a single extraterrestrial signal, we would know immediately one great truth: that it is possible for a civilization to maintain an advanced technological state and not destroy itself. We might even learn that life and intelligence pervade the Universe. The sharpness of the impact of simple detection will depend on the circumstances of discovery. If we were to find real signals after only a few years of a modest search, there is little doubt the news would be sensational. If, on the other hand, signals were detected only after a protracted effort over generations with a large search system, the result might be less conspicuous. Note well that it is likely that the early announcements of the detection of deliberate signals may turn out to be mistaken, not verified by further study and observation. They may be natural phenomena of a new kind, or some terrestrial signal, or even a hoax. (Indeed, this has already happened more than once!) Press and public must use caution if we are to escape the volatile raising and dashing of great hopes. We stress the importance of a skeptical stance and the need for verification, because we hold that even a single genuine detection would in and of itself have enormous importance. Of course it is very difficult to foresee the content of a signal except in the most general way. A signal could be a beacon a deliberate transmission specifically for the purpose of attracting the attention of an emerging civilization like ourselves. Alternately, it could be a leakage signal similar to our own television broadcasts or radars, not intended for our detection. Whatever the signal, we would remind the reader that it will be a one-way transmission. Any messages in such a transmission would be a message between cultures, not between persons. We have human analogies at hand, in our long-continued interest in great books from the past, say the Greek philosophers; we ponder them afresh in each generation, without any hope of interrogating Socrates or arguing with Aristotle. The first authentic signals will attract intense headline attention. But after that the pace must slow. Perhaps we will learn only that the signal exists. This alone will be significant. We will know we are not alone. However, the information content of any signal could be rich. Study would continue for decades, even generations. Books and universities will be more suited for the news than the daily programs. If the signal is deliberate, decoding will be relatively easy, we expect, because the signal will be anticryptographic; made to reveal its own language coding. If the message comes by radio, both transmitting and receiving civilizations will have in common at least the details of radiophysics. (The commonality of mathematics and the physical sciences is the reason that many scientists expect the messages from extraterrestrial civilizations to be decodable if in a slow and halting manner.) No one is wise enough to predict in detail what the consequences of such a decoding will be, because no one is wise enough to understand beforehand what the nature of the message will be. Some have worried that a message from an advanced society might make us lose faith in our own, might deprive us of the initiative to make new discoveries if it seems that there are others who have made those discoveries already, or might have other negative consequences. But we point out that we are free to ignore an interstellar message if we find it offensive. Few of us have rejected schools because teachers and textbooks exhibit learning of which we were so far ignorant. If we receive a message, we are under no obligation to reply. If we do not choose to respond, there is no way for the transmitting civilization to determine that its message was received and understood on the tiny distant planet Earth. (Even a sweet siren song would be little risk, for we are bound by bonds of distance and time much more securely than was Ulysses tied to the mast.) The receipt and translation of a radio message from the depths of space seems to pose few dangers to mankind; instead it holds promise of philosophical and perhaps practical benefits for all of humanity. Other imaginative and enthusiastic speculators foresee big technological gains, hints and leads of extraordinary value. They imagine too all sorts of scientific results, ranging from a valid picture of the past and the future of the Universe through theories of the fundamental particles to whole new biologies. Some conjecture that we might hear from near-immortals the views of distant and venerable thinkers on the deepest values of conscious beings and their societies! Perhaps we will forever become linked with a chain of rich cultures, a vast galactic network. Who can say? If it is true that such signals might give us, so to speak, a view of one future for human history, they would take on even greater importance. Judging that importance lies quite outside the competence of the members of this committee, chosen mainly from natural scientists and engineers. We sought some advice from a group of persons trained in history and the evolution of culture, but it is plain that such broad issues of the human future go beyond what any small committee can usefully outline in a few days. The question deserves rather the serious and prolonged attention of many professionals from a wide range of disciplines anthropologists, artists, lawyers, politicians, philosophers, theologians even more than that, the concern of all thoughtful persons, whether specialists or not. We must, all of us, consider the outcome of the *It is for this reason that this undertaking is not called Communication with Extraterrestrial Intelligence (CETI), but Search for Extraterrestrial Intelligence (SETI). |