Imágenes de páginas
PDF
EPUB

darkness and drudgery to light and dignity. Opportunity has been created for miners to become men of standing in the community in which they live; and means provided for educating their children and for obtaining comfortable homes adorned with the refinements of civilisation.

Well boring is an ancient art-known to the Egyptians and the Chinese. Wells were coeval with Abraham when his servant had the celebrated interview with Rebecca. "Jacob's well at Sycharthe ancient Shechim-has been visited by travellers in all ages and has been minutely described. It is nine feet in diameter and one hundred and five feet deep, made entirely through rock. When visited by Maundrel it contained fifteen feet of water."Knight. Some kind of a drill must have been used to have cut so great a depth through rock. The Chinese method of boring wells from time immemorial has been by the use of a sharp chisel-like piece of hard iron on the end of a heavy iron and wood frame weighing four or five hundred pounds, lifted by a lever and turned by a rattan cord operated by hand, and by which wells from fifteen hundred to eighteen hundred feet in depth and five or six inches in diameter have been bored.

This method has lately been improved by attaching the chisel part, which is made very heavy, to a rope of peculiar manufacture, which gives the chisel a turn as it strikes, combined with an air pump to suck up from the hole the accumulating dirt and water.

Artesian wells appear to have first been known in Europe in the province of Artois, France, in the thirteenth century. Hence their name. The previous state of the art in Egypt, China and elsewhere was not then known.

Other modern inventions in well-making machinery have consisted in innumerable devices to supplant manual labour and to meet new conditions.

Coal Oil-Reichenbach, the German chemist, discovered paraffine. Young, soon after, in 1850, patented paraffine oil made from coal. These discoveries, added to the long observed fact of coal oil floating on streams in Pennsylvania and elsewhere, led to the search for its natural source. The discovery of the reservoirs of petroleum in Pennsylvania in 1855-1860, and subsequently of gas, which nature had concealed for so long a time, gave a great impetus to inventions to obtain and control these riches. With earth-augurs, drills, and drill cleaning and clearing and "fishing” apparatus, and devices for creating a new flow of oil, and tubing, new forms of packing, etc., inventors created a new industry.

Colonel E. Drake sank the first oil well in Pennsylvania in 1859. Since then, 125,000 oil wells have been drilled in that and neighbouring localities. The world has seldom seen such excitement, except in California on the discovery of gold, as attended the coal oil discovery. The first wells sunk gushed thousands of barrels a day. Farmers and other labouring men went to bed poor and woke up rich. Rocky wildernesses and barren fields suddenly became Eldorados. The burning rivers of oil were a reflection of the golden treasures which flowed into the hands and pockets of thousands as from a perpetual fountain touched by some great magician's wand.

Old methods of boring wells were too slow, and although the underlying principle was the same, the new methods and means invented enabled wells to be bored with one-tenth the labour, in one-tenth the

time, and at one-tenth the cost. Many great cities and plains and deserts have been provided with these wells owing to the ease with which they can now be sunk.

66

Another ingenious method of sinking wells was invented by Colonel N. W. Greene at Cortland, New York, in 1862. It became known as the driven well," and consisted of a pointed tube provided with holes above the pointed end, and an inclosed tube to prevent the passage of sand or gravel through the holes in the outer tube. When the pointed tube was driven until water was reached the inner tube was withdrawn and a pump mechanism inserted. This well, so simple, so cheap and effective, has been used in all countries by thousands of farmers on dry plains and by soldiers in many desert lands. With these and modern forms of artesian wells the deserts have literally been made to blossom as the rose.

CHAPTER XXV.

HOROLOGY AND INSTRUMENTS OF PRECISION.

“Time measures all things, but I measure it.”

So far as we at present know there were four forms of time-measuring instruments known to antiquity-the sun-dial, the clepsydra or water clock, the hour-glass, and the graduated candle.

The sun-dial, by which time was measured by the shadow cast from a pin, rod or pillar upon a graduated horizontal plate the graduations consisting of twelve equal parts, in which the hours of the day were divided, were, both as to the instrument and the division of the day into hours, invented by the Babylonians or other Oriental race, set up on the plains of Chaldea, constructed by the Chinese and Hindoosput into various forms by these nations, and adapted, but unimproved, by the learned Greeks and conquering Romans. It appears to have been unknown to the Assyrians and Egyptians, or if known, its knowledge confined to their wise men, as it does not appear in any of their monuments.

The clepsydra, an instrument by which in its earliest form a portion of time was measured by the escape of water from a small orifice in the bottom of a shell or vase, or by which the empty vase, placed in another vessel filled with water, was gradually filled through the orifice and which sank within a certain

time, is supposed by many to have preceded the invention of the sun-dial. At any rate they were used contemporaneously by the same peoples.

In its later form, when the day and night were each divided into twelve hours, the vessel was correspondingly graduated, and a float raised by the inflowing water impelled a pointer attached to the float against the graduations.

Plato, it is said, contrived a bell so connected with the pointer that it was struck at each hour of the night. But the best of ancient clepsydras was invented by Ctesibius of Alexandria about the middle of the third century B. C. He was the pupil of Archimedes, and adopting his master's idea of geared wheels, he mounted a toothed wheel on a shaft extending through the vessel and carrying at one end outside of the vessel a pointer adapted to move around the face of a dial graduated with the 24 hours. The vertical toothed rod or rack, adapted to be raised or lowered by a float in a vessel gradually filled with water, engaged a pinion fixed on another horizontal shaft, which pinion in turn engaged the larger wheel. It was not difficult to proportion the parts and control the supply of water to make the point complete its circuit regularly. Then the same inventor dispensed with the wheel, rack, and pinion, and substituted a cord to which a float was attached, passing the cord over a grooved pulley and securing a weight at its other end. The pulley was fixed on the shaft which carried the hour hand. The float was a counterbalance to the weight, and as it was lifted by the water the weight stretched the cord and turned the pulley, which caused the pointer to move on the dial and indicate the hour. The water thus acted as an escapement to control the motive

« AnteriorContinuar »