Imágenes de páginas
PDF
EPUB

them than any others; they are only more frequently ser

viceable ways to us.

Reasoning is always for a subjective interest.

To re

vert now to our symbolic representation of the reasoning process:

M is P

S is M

S is P

M is discerned and picked out for the time being to be the essence of the concrete fact, phenomenon, or reality, S. But M in this world of ours is inevitably conjoined with P; so that P is the next thing that we may expect to find conjoined with the fact S. We may conclude or infer P, through the intermediation of the. M which our sagacity began by discerning, when S came before it, to be the essence of the case.

We

Now note that if P have any value or importance for us, M was a very good character for our sagacity to pounce upon and abstract. If, on the contrary, P were of no importance, some other character than M would have been a better essence for us to conceive of S by. Psychologically, as a rule, P overshadows the process from the start. are seeking P, or something like P. But the bare totality of S does not yield it to our gaze; and casting about for some point in S to take hold of which will lead us to P, we hit, if we are sagacious, upon M, because M happens to be just the character which is knit up with P. Had we wished Q instead of P, and were N a property of S conjoined with Q, we ought to have ignored M, noticed N, and conceived of S as a sort of N exclusively.

Reasoning is always to attain some particular conclusion, or to gratify some special curiosity. It not only breaks up the datum placed before it and conceives it abstractly; it must conceive it rightly too; and conceiving it rightly means conceiving it by that one particular abstract character which leads to the one sort of conclusion which it is the reasoner's temporary interest to attain.

The results of reasoning may be hit upon by accident. The stereoscope was actually a result of reasoning; it is conceivable, however, that a man playing with pictures and mirrors might accidentally have hit upon it. Cats have been known to open doors by pulling latches, etc. But no cat, if the latch got out of order, could open the door again, unless some new accident of random fumbling taught her to associate some new total movement with the total phenomenon of the closed door. A reasoning man, however would open the door by first analyzing the hindrance. He would ascertain what particular feature of the door was wrong. The lever, e.g., does not raise the latch sufficiently from its slot-case of insufficient elevation: raise door bodily on hinges! Or door sticks at bottom by friction against sill: raise it bodily up! Now it is obvious that a child or an idiot might without this reasoning learn the rule for opening that particular door. I remember a clock which the maid-servant had discovered would not go unless it were supported so as to tilt slightly forwards. She had stumbled on this method after many weeks of groping. The reason of the stoppage was the friction of the pendulum-bob against the back of the clock-case, a reason which an educated man would have analyzed out in five minutes. I have a student's lamp of which the flame vibrates most unpleasantly unless the chimney be raised about a sixteenth of an inch. I learned the remedy after much torment by accident, and now always keep the chimney up with a small wedge. But my procedure is a mere association of two totals, diseased object and remedy. One learned in pneumatics could have abstracted the cause of the disease, and thence inferred the remedy immediately. By many measurements of triangles one might find their area always equal to their height multiplied by half their base, and one might formulate an empirical law to that effect. But a reasoner saves himself all this trouble by seeing that it is the essence (pro hac vice) of a triangle to be the half of a parallelogram whose area is the height into the entire base.

To see this he must invent additional lines; and the geometer must often draw such to get at the essential property he may require in a figure. The essence consists in some relation of the figure to the new lines, a relation not obvious at all until they are put in. The geometer's genius lies in the imagining of the new lines, and his sagacity in the perceiving of the relation.

Thus, there are two great points in reasoning. First, an extracted character is taken as equivalent to the entire datum from which it comes; and,

Second, the character thus taken suggests a certain consequence more obviously than it was suggested by the total datum as it originally came. Take these points again,

successively.

1) Suppose I say, when offered a piece of cloth, "I won't buy that; it looks as if it would fade," meaning merely that something about it suggests the idea of fading to my mind, my judgment, though possibly correct, is not reasoned, but purely empirical; but if I can say that into the color there enters a certain dye which I know to be chemically unstable, and that therefore the color will fade, my judgment is reasoned. The notion of the dye, which is one of the parts of the cloth, is the connecting link between the latter and the notion of fading. So, again, an uneducated man will expect from past experience to see a piece of ice melt if placed near the fire, and the tip of his finger look coarse if he view it through a convex glass. In neither of these cases could the result be anticipated without full previous acquaintance with the entire phenomenon. It is not a result of reasoning.

But a man who should conceive heat as a mode of motion, and liquefaction as identical with increased motion of molecules; who should know that curved surfaces bend light-rays in special ways, and that the apparent size of anything is connected with the amount of the 'bend' of its light-rays as they enter the eye,-such a man would make the right inferences for all these objects, even though he

had never in his life had any concrete experience of them: and he would do this because the ideas which we have above supposed him to possess would mediate in his mind between the phenomena he starts with and the conclusions he draws. But these ideas are all mere extracted portions or circumstances. The motions which form heat, the bending of the light-waves, are, it is true, excessively recondite ingredients; the hidden pendulum I spoke of above is less so; and the sticking of a door on its sill in the earlier example would hardly be so at all. But each and all agree in this, that they bear a more evident relation to the conclusion than did the facts in their immediate totality.

2) And now to prove the second point: Why are the couplings, consequences, and implications of extracts more evident and obvious than those of entire phenomena? For two reasons.

First, the extracted characters are more general than the concretes, and the connections they may have are, therefore, more familiar to us, having been more often met in our experience. Think of heat as motion, and whatever is true of motion will be true of heat; but we have had a hundred experiences of motion for every one of heat. Think of the rays passing through this lens as bending towards the perpendicular, and you substitute for the comparatively unfamiliar lens the very familiar notion of a particular change in direction of a line, of which notion every day brings us countless examples.

The other reason why the relations of the extracted characters are so evident is that their properties are so few, compared with the properties of the whole, from which we derived them. In every concrete fact the characters and their consequences are so inexhaustibly numerous that we may lose our way among them before noticing the particular consequence it behooves us to draw. But, if we are lucky enough to single out the proper character, we take in, as it were, by a single glance all its possible

consequences. Thus the character of scraping the sill has very few suggestions, prominent among which is the suggestion that the scraping will cease if we raise the door; whilst the entire refractory door suggests an enormous number of notions to the mind. Such examples may seem trivial, but they contain the essence of the most refined and transcendental theorizing. The reason why physics grows more deductive the more the fundamental properties it assumes are of a mathematical sort, such as molecular mass or wave-length, is that the immediate consequences of these notions are so few that we can survey them all at once, and promptly pick out those which concern us.

Sagacity. To reason, then, we must be able to extract characters,—not any characters, but the right characters for our conclusion. If we extract the wrong character, it will not lead to that conclusion. Here, then, is the difficulty: How are characters extracted, and why does it require the advent of a genius in many cases before the fitting character is brought to light? Why cannot anybody reason as well as anybody else? Why does it need a Newton to notice the law of the squares, a Darwin to notice the survival of the fittest? To answer these questions we must begin a new research, and see how our insight into facts. naturally grows.

All our knowledge at first is vague. When we say that a thing is vague, we mean that it has no subdivisions ab intra, nor precise limitations ab extra; but still all the forms of thought may apply to it. It may have unity, reality, externality, extent, and what not—thinghood, in a word, but thinghood only as a whole. In this vague

way, probably, does the room appear to the babe who first begins to be conscious of it as something other than his moving nurse. It has no subdivisions in his mind, unless, perhaps, the window is able to attract his separate notice. In this vague way, certainly, does every entirely new experience appear to the adult. A library, a museum, a machine-shop, are mere confused wholes to the unin

« AnteriorContinuar »