Imágenes de páginas
PDF
EPUB

clusters of galaxies reveals a previously unknown component of the Universe whose mass is equal to that previously known to exist in optically visible objects. The

impact of these discoveries, and of those made at other wavelengths both from space and from the ground, has made the last twenty years one of the truly explosive periods in our scientific history.

Astronomical research from space now needs permanent orbiting observatories. Therefore, this country could take a truly significant step to further space astronomy by establishing such an observatory, or cluster of observatories, furnished with instruments to observe every region of the electromagnetic spectrum. These facilities could be assembled and maintained from Earth orbit. There is thus a close connection between the needs of space astronomy and the scientific opportunities presented by the construction of a Shuttle base or space station. In fact, the carrying out of astronomical observations from space could provide an initial focus for activities aboard the Shuttle base during its construction and development. Beyond the fact that such an enterprise would have tremendous significance for science, it would furnish a clear restatement of the American commitment to the noblest adventures of the intellect.

In summary, we have built a powerful and expensive transportation system to near-Earth orbit; analysis of the economic, technological, and scientific requirements for our future space effort indicates strongly that the next goal of the American space program should be a permanent Earth-orbiting Shuttle base or space station. Such a station should be a service and repair facility for the Shuttle itself, a material and supply depot, a living facility for space workers and a center for research into space habitation, a launch pad for far-space missions, and a facility from which orbiting astronomical observatories can be launched and maintained.

At present, however, the substantial funds needed to exploit the capabilities of the Shuttle and to build upon the STS capital investment are not being made available. Instead, one reads of suggestions that Shuttle development be followed by manned visits to planets or the construction of space colonies, activities which should be postponed until the suitability of prolonged human space habitation has been demonstrated by scientific research and practical experience aboard a near-Earth orbiting space station. Such suggested follow-on programs, which are engineering ventures requiring enormous resources, are in my view some two to three decades away from economical and reasonable pursuit; if implemented too early they can only divert essential funds from the more desirable near-term goal of constructing a Shuttle base or space station. I would therefore strongly hope that NASA's budget over the next decade could be devoted to the exploitation of the Shuttle Space Transportation System for scientific and technological purposes, rather than to longer-term projects that do not directly build upon the Shuttle investment and capability.

-3

Arthur D. Little, Inc. ACORN PARK CAMBRIDGE MA 02140-(617) 864-5770 - TELEX 921436

January 26, 1978

The Honorable Olin E. Teague
Chairman

Committee on Science & Technology
U.S. House of Representatives
Suite 2321

Rayburn House Office Building
Washington, D. C. 20515

Dear Mr. Teague:

Thank you very much for your letter of December 19th inviting me to submit a paper on future space programs for use of the members of the Committee on Science and Technology. Enclosed are 50 copies of the paper, "Solar Power Satellite Development: A Time for Decision," including an abstract and my resume.

I greatly appreciate the opportunity to contribute to your efforts to accomplish a comprehensive evaluation of future space programs and to develop as a national goal for the year 2000 the most appropriate approach for the conversion of solar energy in space to provide power to the Earth. Please call on me if I can be of any further assistance.

[blocks in formation]
[blocks in formation]

ABSTRACT

At the May 24, 1973 Hearings of the Committee on Science and Astronautics, I proposed that a solar power satellite (SPS) be developed as an option for power generation on Earth. The development of the SPS meets the criteria applicable to future space programs:

[ocr errors]
[ocr errors]

The acquisition of new knowledge and understanding;

Advances based on existing technology;

An enterprise which is significant to future progress;

• Enhancement of peaceful uses of space for the benefit of humanity.

The results of extensive SPS system studies have confirmed that there are no known technical barriers to the design, deployment and operation of the SPS. Economic studies have showed that projected capital and electric power generation costs are within the competitive range of the costs of future terrestrial power generation methods. Risk analyses have provided an economic justification for proceeding with the initial phases of an SPS development program.

In view of the increasing confidence in the technical feasibility and economic promise of the SPS, I recommend that a five-year SPS development program be undertaken which addresses the critical issues pertaining to: Technology Development, Environmental Effects, Economic Factors and Institutional Arrangements.

On the basis of the available evidence, I believe that:

⚫ The SPS is one of the most promising power generation options;

⚫ The decision to develop this option on an expanded scale should be
made now;

• The SPS development program should be a significant component of
our country's future space programs and energy plan.

SOLAR POWER SATELLITE DEVELOPMENT: A TIME FOR DECISION

by

Dr. Peter E. Glaser, Vice President
Engineering Sciences
Arthur D. Little, Inc.
Cambridge, Mass. 02140

THE CONTEXT FOR THE DEVELOPMENT OF ENERGY OPTIONS The use of energy has been an essential component in improving the quality of life beyond the basic necessities for survival. A striking feature of the history of exploitation of energy resources has been the sustained growth of energy consumption in the industrialized nations during the last century. Meeting this demand for energy has been the primary driving force in the development of technology to mine coal, dam rivers, drill for oil and gas, and extract uranium. Furthermore, conversion of energy resources into useful forms has been and will continue to be an essential component of human activities.

The recognition that no one energy source will, by itself, meet all future energy demands, that the search for new sources of non-renewable fuels can only put off the day of their ultimate exhaustion, and that uncertainties inherent in achieving the potential of known energy conversion methods are large when applied on a global scale, has led to renewed emphasis on the development of solar energy applications. The degree to which these applications can be successfully developed will to a large extent depend on the economic feasibility of solar energy technology and the reduced availability of non-renewable fuels and their future cost escalation. Although solar energy is a widely distributed resource, its low flux density requires conversion technology that is capital intensive. Finding the best method for converting the available energy efficiently and economically on a scale large enough to have significant impact, therefore, presents a challenge. The successful and widespread introduction of solar technology will require considerable development in order to strike the appropriate balance among conflicting requirements presented by economics, the environment, and society's needs. Current solar energy research and development is directed towards a search for new technology and approaches to reduce the cost of conversion and for designs and processes to permit low-cost mass production. Although expectations for significant benefits are high, results on the desired scale are unlikely to be achieved quickly, not because of the lack of appropriate technology but because of limited experience with such technology and, until very recently, lack of appreciation of the potential of solar energy.

SOLAR ENERGY CONVERSION METHODS

The capacity of solar energy to produce heat sufficient to power heat engines and generate electric power or direct conversion of solar radiation to electricity through the photovoltaic process offer promising alternatives to conventional methods for power

1

« AnteriorContinuar »